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Optimality of Received Energy in Decision
Fusion Over Rayleigh Fading Diversity MAC

With Non-Identical Sensors

Domenico Ciuonzo, Gianmarco Romano, and Pierluigi Salvo Rossi

Abstract—Received-energy test for non-coherent decision fusion over a
Rayleigh fading multiple access channel (MAC) without diversity was re-
cently shown to be optimum in the case of conditionally mutually inde-
pendent and identically distributed (i.i.d.) sensor decisions under specific
conditions [C. R. Berger, M. Guerriero, S. Zhou, and P. Willett, “PAC vs.
MAC for Decentralized Detection Using Noncoherent Modulation,” IEEE
Trans. Signal Process., vol. 57, no. 9, pp. 3562–2575, Sep. 2009], [F. Li, J.
S. Evans, and S. Dey, “Decision Fusion Over Noncoherent Fading Multiac-
cess Channels,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4367–4380,
Sep. 2011]. Here, we provide a twofold generalization, allowing sensors to
be non identical on one hand and introducing diversity on the other hand.
Along with the derivation, we provide also a general tool to verify opti-
mality of the received energy test in scenarios with correlated sensor deci-
sions. Finally, we derive an analytical expression of the effect of the diversity
on the large-system performances, under both individual and total power
constraints.

Index Terms—Distributed detection, energy detection, MIMO, wireless
sensor networks.

I. INTRODUCTION

Starting from classical distributed detection [3], large efforts in the
recent literature have been devoted to the implementation of distributed
detection in wireless sensor networks (WSNs) [4]–[6]. Local decisions
in a WSN are usually transmitted to a decision fusion center (DFC)
in order to improve reliability of geographically distributed sensing
through central processing. Common system architectures make refer-
ence to the availability of parallel (non-interfering) channels from the
sensors to the DFC [7]–[9]. However, more sophisticated setups have
been investigated, where the intrinsically interfering nature of the wire-
less channel is exploited and not combated [1], [10], [11].
Recently, in [1] and [2], the received-energy test was studied for

non-coherent decision fusion over a multiple access channel (MAC).
More specifically, in [1] the received energy was claimed as optimal for
the no-diversity case with conditionally (given the phenomenon) mu-
tually independent and identically distributed (i.i.d.) sensor local deci-
sions, as long as the probability of false alarm of the generic sensor is
lower than the corresponding probability of detection. Also, analytical
performances of the received-energy test in the diversity scenario were
derived. However, optimality property of the test was not investigated.
The optimality of the test for the no-diversity case with conditionally
i.i.d. sensor local decisions was proven in [2]. Only the case with sen-
sors whose probability of false alarm is lower than the corresponding
probability of detection was considered. Nonetheless, the diversity case
was still ignored in the optimality analysis.
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The main contributions of this correspondence are:
• a rigorous proof of the optimality of the received-energy test for
non-coherent decision fusion1 over a Rayleigh fading MAC with
arbitrary order of diversity and with conditionally mutually inde-
pendent but non identically distributed (i.n.i.d.) sensor decisions,
as long as each sensor probability of false alarm is lower than the
correspondent probability of detection;

• as a side result, a sufficient condition on the log-likelihood ratio
(LLR) of the number of active sensors suited for testing received
energy optimality in scenarios with correlated local decisions;

• analytical derivation of large-system performances for condition-
ally i.i.d. sensor local decisions as a function of the order of di-
versity, where two different scenarios are considered: (a) sensors
with an individual power constraint (IPC); (b) sensors with a total
power constraint (TPC).

It is worth noting that in [11] a different scenario was analyzed, where:
(i) conditionally i.i.d. sensor decisions were considered, and (ii) instan-
taneous channel state information (CSI) at the DFC was assumed. The
focus was on the performance analysis of several sub-optimal fusion
rules in terms of complexity, required knowledge, probability of detec-
tion and false alarm.
The paper is organized as follows: Section II introduces the system

model; in Section III we present the main results of this correspon-
dence, while in Section IV we draw some concluding remarks; proofs
are confined to Appendices.
Notation—Lower-case (resp. Upper-case) bold letters denote vec-

tors (resp. matrices), with (resp. ) representing the th (resp.
the th) element of the vector (resp. matrix ); upper-case cal-
ligraphic letters, e.g., , denote discrete and finite sets; denotes
the identity matrix; (resp. ) denotes the null (resp. ones)
vector of length and denote ex-
pectation, transpose, conjugate transpose, real part, imaginary part and
Frobenius norm operators; and are used to denote prob-
ability mass functions (pmf) and probability density functions (pdf),
while and their corresponding conditional counter-
parts; (resp. ) denotes a circular symmetric com-
plex (resp. real) normal distribution with mean vector and covari-
ance matrix denotes a binomial distribution of trials with
probability of success and denotes a chi-square distribution with
degrees of freedom; denotes the convolution between se-

ries and ; finally the symbols and mean “distributed as”
and “convergence in distribution”.

II. SYSTEM MODEL

A. WSN Modeling

We consider a distributed binary hypothesis test, where sen-
sors are used to discriminate between the hypotheses of the set

, representing, not necessarily, the absence or
the presence of a specific target of interest. The th sensor,

, takes a binary local decision about
the observed phenomenon on the basis of its own measurements.
Each decision is mapped to a symbol rep-

resenting an On-Off Keying (OOK) modulation: without loss of gen-
erality we assume that maps into .
The quality of the th sensor decisions is characterized by the condi-
tional probabilities . More specifically, we denote

1Although, energy receiver and non-coherent are not synonyms, in the paper
we will confuse them. In the related literature, such a misuse is common due to
the fact that the energy detector is the default receiver adopted for non-coherent
decision fusion.
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and , respectively the proba-
bility of detection and false alarm of the th sensor.
The sensors communicate with the DFC over a wireless flat-fading

MAC, modeled through i.i.d. Rayleigh fading coefficients with equal
mean power. The DFC employs an -diversity approach in order to
combat signal attenuation due to small-scale fading of the wireless
medium. The diversity can be accomplished with time, frequency, code
or antenna diversity (as recently proposed in [10], [12]). Statistical CSI
is assumed at the DFC, i.e., only the pdf of each fading coefficient is
available.
We denote: the received signal at the th diversity branch of

the DFC after matched filtering and sampling; the
fading coefficient between the th sensor and the th diversity branch
of the DFC2; the additive white Gaussian noise at the th diversity
branch of the DFC. The vector model at the DFC is the following:

(1)

where are
the received signal vector, the channel matrix, the transmitted signal
vector and the noise vector, respectively. Finally, we define the random
variable , representing the number of active
sensors and the set of possible realizations of .

B. LLR

The optimal test [3], [13] for the considered problem can be formu-
lated as

(2)

where and denote the estimated hypothesis, the Log-Like-
lihood-Ratio (LLR, i.e., the optimal fusion rule) and the threshold to
which the LLR is compared to. The threshold can be determined to
assure a fixed system false-alarm rate (Neyman-Pearson approach) or
can be chosen to minimize the probability of error (Bayes approach)
[3], [13]. An explicit expression of the LLR from (2) is given by

(3)

(4)

where we have exploited the conditional independence of from
(given ).
In the case of conditionally (given ) i.i.d. sensor decisions

we have that
and . Differently, when local sensor decisions are
conditionally i.n.i.d. the pmfs are represented by the more
general Poisson-Binomial distribution [14]–[16], with expressions
given by:

(5)

2It is worth noting that assuming an asymmetric model for channel coefficient
statistics would be more realistic. However, this would make the results much
more dependent on the specific scenario without adding any significant insight
from a theoretical point of view. A symmetric model for channel coefficient
statistics is assumed for a two-fold reason: on one side it can be considered as a
starting point before analyzing more realistic application-dependent scenarios;
on the other side a symmetric scenario could represent scenarios in which power
control is considered.

(6)

It is worth noting that (5) requires sumswhich are infeasible to compute
in practice unless the number of sensors is small. For this reason dif-
ferent methods have been proposed in literature for its efficient evalu-
ation. The alternatives include fast convolution of individual Bernoulli
pmfs [14], recursive approaches [15] and a Discrete Fourier Transform
(DFT) based computation [16].

III. OPTIMALITY OF RECEIVED ENERGY

As already stated in [1], the received energy is a sufficient
statistic for the LLR, since (3) depends on only through . However,
sufficiency alone does not guarantee that the test

(7)

is equivalent to (2). As shown in [2], the test in (7) is optimal iff
is a strictly increasing function of . If this property is satis-

fied, the test in (2) is equivalent to (7) by simply setting .
For this purpose in the following we first introduce a general opti-
mality test (in the form of a sufficient condition) which relates the
pmfs , to assure that is strictly increasing
in the case of an -diversity MAC.
Proposition 1: A sufficient condition for to be a strictly

increasing function of is given by:

(8)

where .
Proof: The proof is reported in Appendix A.

The above proposition states that strictly increasing property of
assures optimality of the test in (7). We will refer to as the -LLR
hereinafter3. It is worth noting that such a sufficient condition is inde-
pendent of the order of diversity . Also, (8) depends on the WSN
model only through the number of active sensors (given ) and
does not require any specific assumption on , e.g., condi-
tional mutual independence of local sensor decisions, i.e.,

. This means that (8) plays the role of a general prop-
erty for received energy optimality, to be verified even in the case of
conditionally correlated local sensor decisions.
In the simplest case of conditionally i.i.d. local sensor decisions,

, as assumed in [1], [2], the strictly
increasing property of , is equivalent to

(9)

that reduces to . This result, not only confirms theoretical
findings for optimality of (7) when as in [1], [2], but it also
proves the optimality of the test over the Diversity MAC (i.e., )
used in [1]; this result shows the effectiveness and simplicity of Propo-
sition 1 w.r.t. the approach taken in [2].
Differently, when sensor decisions are conditionally i.n.i.d. (i.e., the

case of a heterogeneous WSN), the following theorem generalizes the
result in (9).

3Note that we will not consider in (8) (and throughout the paper) the case
when testing -LLR strictly increasing property, since has no

physical meaning.
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Theorem 1: If , and
, the -LLR satisfies the strictly increasing

property described in (8) and thus (7) is the optimal test when an
-diversity MAC is employed.
Proof: The proof is reported in Appendix B.

Theorem 1 states that under non identical sensors and
-diversityMAC the received energy is again the optimal test. Also,

Theorem 1 relies on a sufficient condition, i.e., specific WSN config-
urations not satisfying the assumption , but still
verifying (8) may exist. Although such a case is not “typically” of in-
terest, since the condition for th sensor is not realistic in
practical scenarios (i.e., sensors operating under nominal conditions),
it proves the robustness of the received energy in scenarios with some
faulty (or byzantine) sensors4.
We finally evaluate analytically the performances as the number of

sensors goes large, in the case of conditionally i.i.d. sensors. Both IPC
and TPC on the WSN and arbitrary diversity are considered here.
This result generalizes [2], where no-diversity and IPC as-
sumptions were made in deriving formulas. We define

(10)

where, compared to (1), is a merely scaling factor and

is replaced with in in order to keep a fixed amount of average

energy w.r.t. . Then we define the system probabil-
ities of false alarm and detection, respectively and , as:

(11)

Equations (10) and (11) hold for TPC scenario when replacing with
. In this case the average energy is kept fixed

w.r.t. both and .
Theorem 2: If and are finite, as

(12)

(13)

where and . Then the large-

system are given by:

(14)

(15)

while are given by:

(16)

(17)

4A WSN with sensors such that
and verifies the

property in (8).

Fig. 1. Effect of diversity on large-system ROC under both
IPC and TPC; WSN with sensor characteristics

.

Proof: The proof is reported in Appendix C for the IPC case;
performance in the TPC scenario can be derived in a similar fashion.
As expected, if the result of (14) and (15) coincides with the

one given in ([2, Sec. IV]).
It is worth remarking that, in both IPC and TPC scenarios with

diversity, Neyman-Pearson and Bayesian error exponents are zero (cfr.
with [2]), because the large-system ROC can not be driven toward the
point by increasing the number of sensors, as
long as the diversity is kept finite. This intuition is confirmed by the
non-zero values assumed under an IPC and a TPC by the large-system
J-Divergence,

,
which represents a lower-bound for the system error prob-
ability [17], thus enforcing a zero Bayesian error exponent.
Differently, the Neyman-Pearson error exponent is given by

, under . If we choose
such that , then

, giving again a zero error exponent.
Note that the performance in TPC scenarios differ through the ratio

(cfr. (14) and (15) with (16) and (17)) which repre-
sents the performance reduction factor w.r.t. IPC scenarios. Note that

: (i) is an increasing function of the ratio (i.e., the received
SNR), with limiting value equal to one; (ii) is a decreasing function of
, meaning a diverging separation in performance between IPC and

TPC as increases.
The diversity affects in a significant way the large-system probabili-

ties of detection and false alarm, under an IPC, by shifting the Receiver
Operating Characteristic (ROC) toward the upper-left corner, as shown
in Fig. 1, meaning a performance improvement. Differently, it can be
seen how a different effect is present in the TPC case, where an in-
crease of does not always coincide with performance improvement,

but rather an optimal , depending on , exists. This ef-
fect was already noticed in [1] and it is due to non-coherent combining
loss of branch contributions.
Finally, in Figs. 2 and 3 we verify, through simulations, the conver-

gence of the ROC to the large system expression given
by (14) and (15) (resp. (16) and (17)), under IPC (resp. TPC). It is
apparent that the convergence under the TPC is faster w.r.t. the IPC
case, because in both cases the large system ROC expressions rely on
the Gaussian approximation of the Gaussian mixture given by (3). For
such a reason, for a given , imposing a TPC on the WSN assures a
better matching w.r.t. to the IPC case, since all the components of the
mixture will be more concentrated.
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Fig. 2. ROC comparison: large system vs finite number of sensors
under IPC. .

Fig. 3. ROC comparison: large system vs finite number of sensors
under TPC. .

IV. CONCLUDING REMARKS

In this correspondence we showed the optimality of the received-en-
ergy test for decision fusion performed over a non-coherent diversity
MAC with conditionally i.n.i.d. sensor decisions. We derived a suffi-
cient condition on the LLR of the number of active sensors which can
be applied to test the received-energy optimality in WSN with condi-
tionally correlated sensor decisions. Finally, we showed, through an-
alytical results, how the diversity in a WSN with conditionally i.i.d.
sensor decisions affects the large-system performance under both IPC
and TPC.

APPENDIX A
PROOF OF PROPOSITION 1

We prove in this section that (8) is a sufficient condition for the op-
timality of test. From (3), looking at the LLR as a function of , we
get:

(18)

where we denoted and

indicates a positive function of (i.e., ). Strictly
increasing property of LLR is guaranteed if ,
thus manipulations from (18) lead to

(19)

where .
In deriving (19) we could express the double sums in (18) as a function
only of the indices , since the term in bracket in (19) equals
to zero when . Noting that the

condition is rewritten as

(20)

Since both and the term in square brackets are positive (note
that indices in the sums are such that ), the term is
responsible for the sign of each term in the sum. Then a sufficient con-
dition for (20) is obtained assuming that each of those terms is positive.
This is achieved if the following property holds

(21)

It is easy to demonstrate that the condition ,
representing the strictly increasing property of -LLR, i.e.,

, is equivalent to (21). In fact (21) implies that -LLR is
strictly increasing; this is verified just substituting . Differ-
ently, we can show that -LLR strictly increasing property implies (21)
by constructing the chain of inequalities

, all deriving from -LLR strictly increasing property.

APPENDIX B
PROOF OF THEOREM 1

We prove the strictly increasing property of -LLR by induction. Let
us assume there exists a set of sensors with local performances

. The number of active sensors in
this case is denoted . We denote the
probability of active sensors out-of- , given , as

and the corresponding -LLR as .
Initialization: The strictly increasing property of -LLR in single

sensor case , is straightly verified
when .
Induction: Let us assume that for a specific configuration of

sensors the -LLR satisfies the strictly increasing property,
that is . If we add the
th sensor satisfying and we prove that the new -LLR

, i.e., it retains strictly increasing
property, then the proof is complete.
To proceed let us first define

and .
The number of sensors transmitting when the th sensor is added is

then given by . The pmfs and
are then given by [18]

(22)
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The LLR strictly increasing condition is then formulated as follows

(23)

By exploiting the support set of and we can rewrite (23) as
follows

(24)

where obviously . Exploiting
, we obtain

(25)

The condition expressed in (25) can be rewritten as:

(26)

Since , we have that:

(27)

(28)

The condition in (26) is satisfied since positivity of the first two terms
follows from the inequalities in (27), and the difference of the third
and fourth terms in (26) is positive because

(since ) and exploiting the inequality in (28).
This concludes the proof.

APPENDIX C
PROOF OF THEOREM 2

The proof follows in the first part similar steps as in [2]; for this
reason we will only sketch it and underline the substantial differences.
We use here the characteristic function of the vector ,
denoted as , to easily evaluate the limit for . We
then use this result, in conjunction with Levy’s Continuity Theorem
[18] to demonstrate the convergence in distribution of large-system

. Let us now write the characteristic function of as a
function of :

(29)

(30)

where and (with , repre-
senting the index-corresponding dual vectors over Fourier domain).
Following analogous steps as in [2], exploiting: i) conditional inde-
pendence assumptions such as and

; ii) the characteristic function
of is given by [18]; we get

(31)

(32)

where in the last line we exploited . Also, ex-
ploiting similar noteworthy limits as in [2], eventually we have that

. Applying the

Continuity Theorem [18], we obtain . In a

similar way it can be shown that .
The last part consists in proving (14) and (15). The large-system

probabilities of false alarm and detection can be expressed in the equiv-
alent form:

(33)

(34)

where . The probabilities are then easily calculated evalu-
ating the cumulative distribution function of [18]:

(35)

which provides the result.
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